Applying Large Datasets to Developing a Better Understanding of Air Leakage Measurement in Homes

Date Published
03/2013
Publication Type
Journal Article
Authors
LBL Report Number
LBNL-1005795
Abstract

Air tightness is an important property of building envelopes. It is a key factor in determining infiltration and related wall-performance properties such as indoor air quality, maintainability and moisture balance. Air leakage in U.S. houses consumes roughly 1/3 of the HVAC energy but provides most of the ventilation used to control IAQ. There are several methods for measuring air tightness that may result in different values and sometimes quite different uncertainties. The two main approaches trade off bias and precision errors and thus result in different outcomes for accuracy and repeatability. To interpret results from the two approaches, various questions need to be addressed, such as the need to measure the flow exponent, the need to make both pressurization and depressurization measurements and the role of wind in determining the accuracy and precision of the results. This article uses two large datasets of blower door measurements to reach the following conclusions. For most tests the pressure exponent should be measured but for wind speeds greater than 6 m/s a fixed pressure exponent reduces experimental error. The variability in reported pressure exponents is mostly due to changes in envelope leakage characteristics. It is preferable to test in both pressurization and depressurization modes due to significant differences between the results in these two modes.

Journal
International Journal of Ventilation
Volume
11
Year of Publication
2013
Issue
4
Pagination
323-338
URL
Refereed Designation
Refereed
Keywords
Organizations
Research Areas
File(s)
Download citation