Lithium substituted poly(amic acid) as a water-soluble anode binder for high-temperature pre-lithiation
Date Published |
02/2022
|
---|---|
Publication Type | Journal Article
|
Authors | |
---|---|
DOI |
10.1016/j.jpowsour.2021.230889
|
Abstract |
Multifunctional binders hold great promise in advanced electrode designs for both fundamental research and practical utilization of lithium-ion batteries (LIBs). The reactions between Si/SiOx-dominated anodes with lithium are expected to be exothermic in principle, while the thermal tolerance along with the volume change makes high-temperature binders attractive for large scale roll-to-roll manufacturing. For instance, if a high temperature binder is also water soluble, it can be compatible with the current graphite-based anode manufacturing process. In this work, we present a water-soluble poly(amic acid)-based binder, which can withstand high temperature for industrial pre-lithiation process and effectively hold active materials together during repeated charge and discharge cycles. This lithium substituted poly(amic acid) binder (denoted as Li-Pa) can serve as a drop-in replacement for environmentally friendly electrode fabrication in large scale by providing aqueous solubility, exceptional thermal stability and mechanical flexibility. |
Journal |
Journal of Power Sources
|
Volume |
521
|
Year of Publication |
2022
|
Pagination |
230889
|
ISSN Number |
03787753
|
URL | |
Short Title |
Journal of Power Sources
|
Organizations | |
Research Areas | |
Download citation |