Toward Distributed Energy Services: Decentralizing Optimal Power Flow With Machine Learning

Date Published
03/2020
Publication Type
Journal Article
Authors
DOI
10.1109/TSG.2019.2935711
Abstract

The implementation of optimal power flow (OPF) methods to perform voltage and power flow regulation in electric networks is generally believed to require extensive communication. We consider distribution systems with multiple controllable Distributed Energy Resources (DERs) and present a data-driven approach to learn control policies for each DER to reconstruct and mimic the solution to a centralized OPF problem from solely locally available information. Collectively, all local controllers closely match the centralized OPF solution, providing near-optimal performance and satisfaction of system constraints. A rate distortion framework enables the analysis of how well the resulting fully decentralized control policies are able to reconstruct the OPF solution. The methodology provides a natural extension to decide what nodes a DER should communicate with to improve the reconstruction of its individual policy. The method is applied on both single- and three-phase test feeder networks using data from real loads and distributed generators, focusing on DERs that do not exhibit intertemporal dependencies. It provides a framework for Distribution System Operators to efficiently plan and operate the contributions of DERs to achieve Distributed Energy Services in distribution networks.

Journal
IEEE Transactions on Smart Grid
Volume
11
Year of Publication
2020
Issue
2
Pagination
1296 - 1306
ISSN Number
1949-3053
Short Title
IEEE Trans. Smart Grid
Refereed Designation
Refereed
Organizations
Download citation