Potentials for energy efficiency improvement in the U.S. cement industry

Date Published
11/01/1999
Publication Type
Journal Article
Authors
LBL Report Number
LBNL-47322
Abstract

This paper reports on an in-depth analysis of the US cement industry, identifying cost-effective energy efficiency measures and potentials. Between 1970 and 1997, primary physical energy intensity for cement production (SIC 324) dropped 30%, from 7.9 GJ/t to 5.6 GJ/t, while specific carbon dioxide emissions due to fuel consumption and clinker calcination dropped 17%, from 0.29 tC/tonne to 0.24 tC/tonne. We examined 30 energy-efficient technologies and measures and estimated energy savings, carbon dioxide savings, investment costs, and operation and maintenance costs for each of the measures. We constructed an energy conservation supply curve for the US cement industry which found a total cost-effective energy saving of 11% of 1994 energy use for cement making and a saving of 5% of total 1994 carbon dioxide emissions. Assuming the increased production of blended cement, the technical potential for energy efficiency improvement would not change considerably. However, the cost-effective potential would increase to 18% of total energy use, and carbon dioxide emissions would be reduced by 16%. This demonstrates that the use of blended cements is a key cost-effective strategy for energy efficiency improvement and carbon dioxide emission reductions in the US cement industry.

Journal
Energy, the International Journal
Volume
25
Year of Publication
1999
Number
12
Call Number
LBNL-47322
Custom 1
International Energy Studies Group
Keywords
Organizations
Download citation