%0 Journal Article %K Transmission electron microscopy %K Perovskite %K Pulse width %K Cobalt compounds %K Ferroelectric materials %K Epitaxial growth %K Ferroelectricity %K Ferroelectric capacitors %K Silicon wafers %K Epitaxial ferroelectric %K SrTiO %K Low temperatures %K Semiconducting silicon compounds %K X-ray diffraction analysis %K Capacitive couplings %K Electrical response %K Ferroelectric layers %K Perovskite layers %K PZT %K Silicon substrates %K Template layers %K TiO %K Sol-gel process %A B.T Liu %A K Maki %A Y So %A V Nagarajan %A Ramamoorthy Ramesh %A J Lettieri %A J.H Haeni %A D.G Schlom %A W Tian %A X.Q Pan %A F.J Walker %A R.A McKee %B Applied Physics Letters %D 2002 %G eng %P 4801-4803 %R 10.1063/1.1484552 %T Epitaxial La-doped SrTiO3 on silicon: A conductive template for epitaxial ferroelectrics on silicon %V 80 %X Use of an epitaxial conducting template has enabled the integration of epitaxial ferroelectric perovskites on silicon. The conducting template layer, LaxSr1-xTiO3 (LSTO), deposited onto (001) silicon wafers by molecular-beam epitaxy is then used to seed 001-oriented epitaxial perovskite layers. We illustrate the viability of this approach using PbZr0.4Ti0.6O3 (PZT) as the ferroelectric layer contacted with conducting perovskite La0.5Sr0.5CoO 3 (LSCO) electrodes. An important innovation that further facilitates this approach is the use of a low-temperature (450°C) sol-gel process to crystallize the entire ferroelectric stack. Both transmission electron microscopy and x-ray diffraction analysis indicate the LSCO/PZT/LSCO/LSTO/Si heterostructures are epitaxial. The electrical response of ferroelectric capacitors (for pulse widths down to 1 μs) measured via the underlying silicon substrate is identical to measurements made using conventional capacitive coupling method, indicating the viability of this approach. © 2002 American Institute of Physics.