%0 Journal Article %K Room temperature %K Multiferroics %K Ferroelectricity %K Ferroelectric polarization %K Antiferromagnetics %K Antiferromagnetism %K Strain engineering %K Piezoresponse force microscopy (PFM) %K Non-linear optical %K Orthorhombic phase %K Physical societies %K X-ray linear dichroisms %A J.C Yang %A Q He %A S.J Suresha %A C.Y Kuo %A C.Y Peng %A R.C Haislmaier %A M.A Motyka %A G Sheng %A C Adamo %A H.J Lin %A Z Hu %A L Chang %A L.H Tjeng %A E Arenholz %A N.J Podraza %A M Bernhagen %A R Uecker %A D.G Schlom %A V Gopalan %A L.Q Chen %A C.T Chen %A Ramamoorthy Ramesh %A Y.H Chu %B Physical Review Letters %D 2012 %G eng %R 10.1103/PhysRevLett.109.247606 %T Orthorhombic BiFeO3 %V 109 %X A new orthorhombic phase of the multiferroic BiFeO3 has been created via strain engineering by growing it on a NdScO3(110) o substrate. The tensile-strained orthorhombic BiFeO3 phase is ferroelectric and antiferromagnetic at room temperature. A combination of nonlinear optical second harmonic generation and piezoresponse force microscopy revealed that the ferroelectric polarization in the orthorhombic phase is along the in-plane 110©pc directions. In addition, the corresponding rotation of the antiferromagnetic axis in this new phase was observed using x-ray linear dichroism. © 2012 American Physical Society.