%0 Conference Paper %A Y Zhao %A S Zhang %A P Li %A A Chen %A D Li %A S Rizwan %A J Zhang %A J Seidel %A T Qu %A Z Luo %A Q He %A L Yang %A Y Wu %A X Jin %A C Gao %A X Han %A Ramamoorthy Ramesh %B 2015 IEEE International Magnetics Conference, INTERMAG 2015 %D 2015 %G eng %I Institute of Electrical and Electronics Engineers Inc. %R 10.1109/INTMAG.2015.7156525 %T Electric-field control of magnetism in multiferroic heterostructures %@ 9781479973224 %X With the fast development of information storage, exploiting new concepts for dense, fast, and non-volatile random access memory with reduced energy consumption is a significant and challenging task. To realize this goal, electric-field control of magnetism is crucial. In this regard, multiferroic materials are important and have attracted much attention due to their interesting new physics and potentials for exploring novel multifunctional devices [1]. In the multiferroic materials, electric polarization can be tuned by applying an external magnetic field or vice versa. This mag-netoelectric (ME) effect originates from the coupling of the magnetic and ferroelectric orders. However, single-phase multiferroic materials are rare and the multiferroic heterostructures, composed of ferromagnetic (FM) and ferroelectric (FE) materials, provide an alternative way for exploring the ME coupling effect. One of the key issues in the study of the FM/FE heterostructures is the control of magnetism via electric fields, which is essential for the new generation information storage technology. © 2015 IEEE.