%0 Journal Article %K condensation %K energy %K transportation %K usa %K emission %K band gap %K laser %K applications %K ultraviolet %K oriented %K oxide %K p %K time %K ca %K form %K process %K vapor %K excitation %K zinc %K array %K energies %K dc %K ha %K microanalysis %K length %K arrays %K d %K diameter %K light %K linewidth %K nanometer %K nanowire %K nanowires %K optical gain %K oxide nanowires %K quantum %K room temperature %K room-temperature %K sapphire %K sapphire substrate %K sapphire substrates %K semiconductor %K semiconductor nanowires %K storage %K substrate %K substrates %K vapor transport %K zinc oxide %K zinc-oxide %K zno %A Michael H Huang %A Samuel S Mao %A Henning Feick %A Haoquan Yan %A Yiying Wu %A Hannes Kind %A Eicke R Weber %A Richard E Russo %A Peidong Yang %B Science %D 2001 %G eng %N 5523 %P 1897-1899 %R 10.1126/science.1060367 %T Room-temperature ultraviolet nanowire nanolasers %V 292 %2 LBNL-48421 %8 06/2001 %) Laser %X

Room-temperature ultraviolet lasing in semiconductor nanowire arrays has been demonstrated. The self-organized, oriented zinc oxide nanowires grown on sapphire substrates were synthesized with a simple vapor transport and condensation process. These wide band-gap semiconductor nanowires form natural Laser cavities with diameters varying from 20 to 150 nanometers and Lengths up to 10 micrometers. Under optical excitation, surface-emitting lasing action was observed at 385 nanometers, with an emission Linewidth less than 0.3 nanometer. The chemical flexibility and the one-dimensionality of the nanowires make them ideal miniaturized Laser Light sources. These short-wave-length nanolasers could have myriad applications, including optical computing, information storage, and microanalysis