%0 Journal Article %K Deposition %K Target %K Emission %K Power %K Evaporation %K Material %K Thin films %K Ablation %K Laser %K Laser ablation %K Laser ablation %K Superconducting %K Vaporization %K Intensities %K Intensity %K High-tc %K Oxide %K Time %K Ca %K Composition %K Element %K Mass %K Sampling %K Spectrometry %K Constant %K Cu %K Ratio %K Vapor %K Crater %K Mechanism %K Icp-aes %K Elements %K Emission spectrometry %K Emission spectrometry %K Ratios %K Inductively coupled plasma atomic emission spectrometry %K Picosecond %K Ablated material %K Array %K Bi %K Bi-sr-ca-cu-o %K Cuo %K Density %K Droplet %K Droplets %K High-temperature superconductors %K Laser ablation deposition %K Laser sampling %K Nanosecond %K Oxides %K Phase %K Pulsed laser %K Pulsed laser %K Sem %K Sr %K Steady state %K Targets %K Thermal %K Thermal vaporization %A Wing-Tat Chan %A Xianglei Mao %A Richard E Russo %B Applied Spectroscopy %D 1992 %F Laser %G eng %N 6 %P 1025-1031 %T Differential Vaporization During Laser Ablation Deposition of Bi-Sr-Ca-Cu-O Superconducting Materials %U http://www.opticsinfobase.org/as/abstract.cfm?URI=as-46-6-1025 %V 46 %2 LBNL-31914 %X
Nanosecond and picosecond pulsed laser ablated materials from Bi-Sr-Ca-Cu-O superconducting targets are monitored by inductively coupled plasma-atomic emission spectrometry with a photodiode array detector. Differential vaporization was observed; elements of the lower-melting-point oxides (Bi2O3 and CuO) are enriched in the vapor phase, indicating a thermal vaporization mechanism. Melted droplets observed with SEM and enriched Ca and Sr content in the ablation crater measured with EDX support the hypothesis. A steady-state mass ablation composition after prolonged laser sampling is also observed; the ratios of intensity for Bi, Ca, and Sr to Cu are constant for power density 0.1 to 3.0 GW/cm2