%0 Conference Paper %A Yu Joe Huang %A Jim Brodrick %B 2000 ACEEE Summer Study on Energy Efficiency in Buildings %C Pacific Grove, CA %D 2000 %G eng %L LBNL-46303 %T A bottom-up engineering estimate of the aggregate heating and cooling loads of the entire U.S. building stock %1
Simulation Research Group
%2 LBNL-46303 %8 08/2000 %XA recently completed project for the U.S. Department of Energy's (DOE) Office of Building Equipment combined DOE-2 results for a large set of prototypical commercial and residential buildings with data from the Energy Information Administration (EIA) residential and commercial energy consumption surveys (RECS, CBECS) to estimate the total heating and cooling loads in U.S. buildings attributable to different shell components such as windows, roofs, walls, etc., internal processes, and space-conditioning systems. This information is useful for estimating the national conservation potentials for DOE's research and market transformation activities in building energy efficiency.
The prototypical building descriptions and DOE-2 input files were developed from 1986 to 1992 to provide benchmark hourly building loads for the Gas Research Institute (GRI) and include 112 single-family, 66 multi-family, and 481 commercial building prototypes. The DOE study consisted of two distinct tasks:
These building stock data were then multiplied by the simulated component loads to derive aggregated totals by region, vintage, and building type. The heating and cooling energy consumption of the national building stock estimated by this bottom-up engineering approach was found to agree reasonably well with estimates from other sources, although significant differences were found for certain end-uses. The main added value from this study, however, is the insight it provides about the contributing factors behind this energy consumption, and what energy savings can be expected from efficiency improvements for different building components by region, vintage, and building type.