%0 Report %A Derek G Shendell %A Dennis L DiBartolomeo %A William J Fisk %A Alfred T Hodgson %A Toshifumi Hotchi %A Seung-Min Lee %A Douglas P Sullivan %A Michael G Apte %A Leo I Rainer %D 2002 %G eng %T Final methodology for a field study of indoor environmental quality and energy efficiency in new relocatable classrooms in Northern California %1

1.3

%2 LBNL-51101 %X

The prevalence of relocatable classrooms (RCs) at schools is rising due to federal and state initiatives to reduce K-3 class size, and limited capital resources. Concerns regarding inadequate ventilation and indoor air and environmental quality (IEQ) in RCs have been raised. Adequate ventilation is an important link between improved IEQ and energy efficiency for schools. Since students and teachers spend the majority of a 7-8 hour school day inside classrooms, indoor contaminant concentrations are assumed to drive personal school-day exposures. We conducted a demonstration project in new relocatable classrooms (RCs) during the 2001-02 school year to address these issues. Four new 24' x 40' (960 ft2) RCs were constructed and sited in pairs at an elementary school campus in each of two participant school districts (SD) in Northern California. Each RC was equipped with two heating, ventilation, and air conditioning (HVAC) systems, one per module. The two HVAC systems were a standard heat pump with intermittent 25-50% outdoor air ventilation and an energy-efficient advanced system, based on indirect-direct evaporative cooling with an integrated natural gas-fired hydronic heating loop and improved particle filtration, providing continuous 100% outdoor air ventilation at = 15 ft3 min-1 occupant-1. Alternate carpets, wall panels, and ceiling panels were installed in two classrooms - one in each pair - based on the results of a laboratory study of VOC emissions from standard and alternate materials. Numerous IEQ and outdoor air quality and meteorological parameters were measured either continuously over the school year or as integrated school day samples during the fall cooling and winter heating seasons. Details of the RC designs, the field monitoring methodology including handling, storage, transport and management of chemical samples and data, and analyses to be conducted are presented.