%0 Journal Article %A William J Fisk %A Ekaterina Eliseeva %A Mark J Mendell %B Environmental Health %D 2010 %G eng %N 72 %T Association of residential dampness and mold with respiratory tract infections and bronchitis: a meta analysis %V 9 %X

Background

Dampness and mold have been shown in qualitative reviews to be associated with a variety of adverse respiratory health effects, including respiratory tract infections. Several published meta-analyses have provided quantitative summaries for some of these associations, but not for respiratory infections. Demonstrating a causal relationship between dampness-related agents, which are preventable exposures, and respiratory tract infections would suggest important new public health strategies. We report the results of quantitative meta-analyses of published studies that examined the association of dampness or mold in homes with respiratory infections and bronchitis.

Methods

For primary studies meeting eligibility criteria, we transformed reported odds ratios (ORs) and confidence intervals (CIs) to the log scale. Both fixed and random effects models were applied to the log ORs and their variances. Most studies contained multiple estimated ORs. Models accounted for the correlation between multiple results within the studies analyzed. One set of analyses was performed with all eligible studies, and another set restricted to studies that controlled for age, gender, smoking, and socioeconomic status. Subgroups of studies were assessed to explore heterogeneity. Funnel plots were used to assess publication bias.

Results

The resulting summary estimates of ORs from random effects models based on all studies ranged from 1.38 to 1.50, with 95% CIs excluding the null in all cases. Use of different analysis models and restricting analyses based on control of multiple confounding variables changed findings only slightly. ORs (95% CIs) from random effects models using studies adjusting for major confounding variables were, for bronchitis, 1.45 (1.32-1.59); for respiratory infections, 1.44 (1.31-1.59); for respiratory infections excluding nonspecific upper respiratory infections, 1.50 (1.32-1.70), and for respiratory infections in children or infants, 1.48 (1.33-1.65). Little effect of publication bias was evident. Estimated attributable risk proportions ranged from 8% to 20%.

Conclusions

Residential dampness and mold are associated with substantial and statistically significant increases in both respiratory infections and bronchitis. If these associations were confirmed as causal, effective control of dampness and mold in buildings would prevent a substantial proportion of respiratory infections.