%0 Journal Article %A William J Riley %A Ashok J Gadgil %A Yves C Bonnefous %A William W Nazaroff %B Atmospheric Environment %D 1996 %G eng %P 1167-1176 %T The Effect of Steady Winds on Radon Entry into Houses %V 30 %1
2.4
%XWind affects the radon entry rate from soil into buildings and the resulting indoor concentration. To investigate this phenomenon. we employ a previously tested three-dimensional numerical model of soil-gas flow around houses. a commercial computational fluid dynamics code. an established model for determining ventilation rates in the presence of wind. and new wind tunnel results for the ground-surface pressure field caused by wind. These tools and data, applied under steady-state conditions to a prototypical residential building, allow us to
For a broad range of soil permeabilities. two wind speeds, and two wind directions, we quantify the "flushing" effect of wind on the radon in the soil surrounding a house, and the consequent sharp decrease in radon entry rates. Experimental measurements of the time-dependent radon concentration in soil gas beneath houses confirm the existence of wind-induced flushing. Comparisons are made to modeling predictions obtained while ignoring the effect of the wind-generated ground-surface pressures. These investigations lead to the conclusion that wind-generated ground-surface pressures play a significant role in determining radon entry rates into residential buildings.