@article{34220, author = {Ran Wang and Shilei Lu and Wei Feng}, title = {A novel improved model for building energy consumption prediction based on model integration}, abstract = {
Building energy consumption prediction plays an irreplaceable role in energy planning, management, and conservation. Constantly improving the performance of prediction models is the key to ensuring the efficient operation of energy systems. Moreover, accuracy is no longer the only factor in revealing model performance, it is more important to evaluate the model from multiple perspectives, considering the characteristics of engineering applications. Based on the idea of model integration, this paper proposes a novel improved integration model (stacking model) that can be used to forecast building energy consumption. The stacking model combines advantages of various base prediction algorithms and forms them into “meta-features” to ensure that the final model can observe datasets from different spatial and structural angles. Two cases are used to demonstrate practical engineering applications of the stacking model. A comparative analysis is performed to evaluate the prediction performance of the stacking model in contrast with existing well-known prediction models including Random Forest, Gradient Boosted Decision Tree, Extreme Gradient Boosting, Support Vector Machine, and K-Nearest Neighbor. The results indicate that the stacking method achieves better performance than other models, regarding accuracy (improvement of 9.5%–31.6% for Case A and 16.2%–49.4% for Case B), generalization (improvement of 6.7%–29.5% for Case A and 7.1%-34.6% for Case B), and robustness (improvement of 1.5%–34.1% for Case A and 1.8%–19.3% for Case B). The proposed model enriches the diversity of algorithm libraries of empirical models.
}, year = {2020}, journal = {Applied Energy}, volume = {262}, pages = {114561}, month = {01/2020}, issn = {03062619}, doi = {10.1016/j.apenergy.2020.114561}, language = {eng}, }