@article{32382, author = {Laurie A King and McKenzie A Hubert and Christopher Capuano and Judith Manco and Nemanja Danilovic and Eduardo Valle and Thomas R Hellstern and Katherine Ayers and Thomas F Jaramillo}, title = {A non-precious metal hydrogen catalyst in a commercial polymer electrolyte membrane electrolyser}, abstract = {
We demonstrate the translation of a low-cost, non-precious metal cobalt phosphide (CoP) catalyst from 1 cm2 lab-scale experiments to a commercial-scale 86 cm2 polymer electrolyte membrane (PEM) electrolyser. A two-step bulk synthesis was adopted to produce CoP on a high-surface-area carbon support that was readily integrated into an industrial PEM electrolyser fabrication process. The performance of the CoP was compared head to head with a platinum-based PEM under the same operating conditions (400 psi, 50 °C). CoP was found to be active and stable, operating at 1.86 A cm−2 for >1,700 h of continuous hydrogen production while providing substantial material cost savings relative to platinum. This work illustrates a potential pathway for non-precious hydrogen evolution catalysts developed in past decades to translate to commercial applications.
}, year = {2019}, journal = {Nature Nanotechnology}, volume = {14}, pages = {1071 - 1074}, month = {10/2019}, issn = {1748-3387}, doi = {10.1038/s41565-019-0550-7}, language = {eng}, }