Advanced Demand Responsive Lighting

Host: Francis Rubinstein

Demand Response Research Center
Technical Advisory Group Meeting
August 31, 2007
10:30 AM - Noon
Meeting Agenda

- Introductions (10 minutes)
- Main Presentation (~ 1 hour)
- Questions, comments from panel (15 minutes)
Project History

• Lighting Scoping Study (completed January 2007)
 – Identified potential for energy and demand savings using demand responsive lighting systems
 – Importance of dimming
 – New wireless controls technologies

• Advanced Demand Responsive Lighting (commenced March 2007)
Objectives

- Provide up-to-date information on the reliability, predictability of dimmable lighting as a demand resource under realistic operating load conditions
- Identify potential negative impacts of DR lighting on lighting quality
Potential of Demand Responsive Lighting Control

Typical commercial building peak load profile

Lighting dimmed to 25% power and other loads down 10%

Dimmed lighting

A/C

Other
Dimming Ballasts Becoming More Energy-Efficient

Relative System Efficiencies Compared for Instant Start, Program Start and Dimming Ballasts

Number of Ballast Models

- Dimming (N=53)
- Program Start (N=21)
- Instant Start (N=95)
Project Tasks

• *Testing and certification framework* for lighting control systems

• *Pilot tests* of promising demand-responsive lighting systems in buildings

• *Technology transfer* component
Testing and Certification Framework

Requirements

- System-based
- Performance-based
 - Technical specifications
- Manufacturer-agnostic
- Technology neutral

Initial Focus:
- Demand responsive lighting
- Other lighting control strategies later (daylighting, tuning, etc)
System-based

- Complete end-to-end solutions
- Software matters
- Monitoring and verification “in-the-box”
- Calibration and commissioning
Examples of Performance Metrics

- Lamp-Ballast Efficiency
 - Relative System Efficiency (RSE)
- System Response (Latency)
 - “Spinning Reserve” capability
- Reliability
 - Depth of shed
 - Uncertainty (variability) of shed
What’s Needed for Ballast Efficiency

A **Figure of Merit** that can be used to select ballasts according to lamp/ballast system efficacy
What’s Wrong with Existing Metrics?

• Ballast Efficacy Factor (BEF) is incorrectly normalized
 – Makes it difficult to compare BEFs between different ballasts
 – The units of BEF are awkward (1/watts)
• System Lumens Per Watt (LPW) conflates lamp-only variables (phosphor type) with ballast-only variables (ballast efficiency)
• The electrical efficiency of the lamp/ballast system cannot be easily disentangled from LPW
Ballast Efficacy Factor

BEF characterizes the lamp/ballast system efficacy of a test ballast operating a generic lamp type (T-8, T-12, T-5 etc)

Definition of BEF:

\[
BEF \equiv \frac{\text{Ballast Factor} \times 100}{\text{Ballast Input Power}}
\]

where:

\[
\text{Ballast Factor} \equiv \frac{\text{Lamp Lumens on Test Ballast}}{\text{Rated Lamp Lumens}}
\]
Relative System Efficacy

RSE is the BEF, but properly normalized to the rated lamp efficacy

Definition of RSE:

\[
RSE = \frac{\text{Ballast Factor}}{\text{Ballast Input Power}} \times \frac{\text{Total Rated Lamp Power}}{\text{Total Rated Lamp Power}}
\]

where:

\[
\text{Total Rated Lamp Power} \equiv \# \text{ of Lamps per Ballast} \times \text{Rated Lamp Power}
\]
Why is Relative System Efficacy Superior?

- RSEs from multiple ballast types can be easily compared on “level playing field”
- RSE easily calculated from data already supplied by lamp and ballast manufacturers

RSE is ideal metric for distinguishing premium efficiency ballasts from standard
Relative System Efficiency (RSE) for T-8 Fluorescent Ballasts
(1,092 Ballast/Lamp Combinations)
Relative System Efficiency (RSE) for T-5 Fluorescent Ballasts
(218 Ballast/Lamp Combinations)

Number of Ballast/Lamp Combinations

% Cumulative

Relative System Efficiency

1 Lamp Program Start
2, 3 & 4 Lamp Program Start
% Cumulative

0% 20% 40% 60% 80% 100% 120%
0 20 40 60 80 100 120

Relative System Efficiency

0 0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2
Summarizing

- RSE is superior to BEF for distinguishing ballasts in terms of system efficacy
- It is easy to calculate RSE from BEF without any additional data
Lessons Learned from Lighting Controls Demonstrations

- Evaluating the energy savings from lighting controls is harder than evaluating the savings from electronic ballasts
 - Electronic ballasts save energy simply *because* they are installed
 - Lighting controls only save energy if they positively impact operational performance
- Need independent, third party evaluation of controls savings
 - Manufacturer information not reliable
- Critical to measure energy usage both *before* and *after* installation of controls
 - The baseline matters!
- Demand response should be integrated with energy efficiency strategies
- Lighting controls should monitor and archive energy data as well as control lighting
Reducing the Risk of Installing Lighting Controls

Utilities need a consistent, reliable methodology for evaluating the energy savings and demand shed potential for various combinations of lighting control strategies in different building applications, regardless of networking technology.

With such a database, utilities will be able to appropriately incentivize the installation of energy savings controls in all building types.
Rationale for Pilot Tests

- Energy and demand savings from lighting controls systems must be evaluated under realistic building conditions
- Consistent evaluation of alternative solutions relative to well-defined baseline
- Evaluate changes in luminous environment under different lighting scenarios
Pilot Test Methodology

• Evaluate demand and energy savings under different lighting scenarios
 – Permuting the general and task lighting
• Define fair, consistent baseline against which to compare DR alternatives
• Evaluate changes in luminous environment under different lighting scenarios using High Dynamic Range photometry
Lighting Quality Evaluation

- Lighting quality metrics to be considered include:
- Near-hemispherical, accurate luminance maps of illuminated workstations from key viewpoints, presented as iso-luminance and false color renderings
- Statistical luminance analysis considering luminance ratios, distribution and uniformity of all visible surfaces, including computer monitors
- Detailed glare analysis of all sources including daylight from windows
- Horizontal illuminance distributions at the working plane and vertical illuminance at key viewing directions
- Spectral content, color temperature, S/P ratios
Status of Pilot Tests

• Two workstation-specific lighting control systems at Philip Burton Federal Building
 – Agiliti by Lightolier
 – Edapt by Ledalite
 – Low ambient basecase

• Building 90 flex space
 – LMCS by Lumenergi
 – ZigBee wireless ballasts by RF Arrays (?)
High Dynamic Range Photometry

• Canon 5D with fisheye lens
• Automated image capture
• Analysis of data in Adobe Photoshop CS 3
 – Well-documented, production system for HDR capture and analysis
Sample HDR
Workstation Specific Luminaires I

Agiliti by Lightolier

Two T-5 HO lamps
top-over bottom

DALI-based

User control of
lower lamp

Building control of
upper lamp
Workstation Specific Luminaires II

Edapt by Ledalite

Three T-8 lamps per luminaire

RS-485 network

User control of two outer lamps

Building control of center lamp
Control Panel for Demand Response

Load shedding – Building settings

A. Building control settings
B. Load Shedding Groups (Building default)
C. Add New
D. Load Shedding Mode
E. Loadshed from trigger point
F. % of the entire building load used by lighting system
G. Select load shedding methods to use
Control Panel for Fine-tuning the DR Strategy

Local load shedding (Fixed trigger options)

<table>
<thead>
<tr>
<th>Select load shedding methods to use</th>
</tr>
</thead>
<tbody>
<tr>
<td>☑ Local load shedding</td>
</tr>
<tr>
<td>☐ External fixed trigger load shedding</td>
</tr>
<tr>
<td>☐ External DR request</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Settings for LOCAL (Fixed Trigger Levels 1, 2 & 3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 kW</td>
</tr>
<tr>
<td>□ This load or higher forces shed level 1 (10%)</td>
</tr>
<tr>
<td>□ Don't release this level until load falls below 80 kW</td>
</tr>
<tr>
<td>150 kW</td>
</tr>
<tr>
<td>□ This load or higher forces shed level 2 (20%)</td>
</tr>
<tr>
<td>□ Don't release this level until load falls below 130 kW</td>
</tr>
<tr>
<td>200 kW</td>
</tr>
<tr>
<td>□ This load or higher forces shed level 3 (30%)</td>
</tr>
<tr>
<td>□ Don't release this level until load falls below 180 kW</td>
</tr>
</tbody>
</table>

Local load shedding (Variable shedding options)

<table>
<thead>
<tr>
<th>Select load shedding methods to use</th>
</tr>
</thead>
<tbody>
<tr>
<td>☑ Local load shedding</td>
</tr>
<tr>
<td>☐ External fixed trigger load shedding</td>
</tr>
<tr>
<td>☐ External DR request</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Select local load shedding method</th>
</tr>
</thead>
<tbody>
<tr>
<td>☑ Use variable load shed based on building load</td>
</tr>
<tr>
<td>☐ Use preset loads to trigger fixed load shedding levels</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Settings for LOCAL (Variable Shedding)</th>
</tr>
</thead>
<tbody>
<tr>
<td>200 kW</td>
</tr>
<tr>
<td>MIN - Start shedding when building load exceeds this value</td>
</tr>
<tr>
<td>MAX - Building load for maximum loadshed</td>
</tr>
<tr>
<td>400 kW</td>
</tr>
<tr>
<td>Shedding % to start with at MIN Building load (0 - 100%)</td>
</tr>
<tr>
<td>Shedding % at MAX Building load or higher (0 - 100%)</td>
</tr>
<tr>
<td>Large load shed step change limit (%)</td>
</tr>
<tr>
<td>10 %</td>
</tr>
<tr>
<td>Medium load shed step change limit (%)</td>
</tr>
<tr>
<td>2 %</td>
</tr>
</tbody>
</table>
Commissioning Panel for Daylight Controls
Technology Transfer

- Informed, public-interest TAG guiding research
 - No manufacturers
- Developing the market transformation vehicle
- Setting RSE efficiency targets
- Evaluating potential negative impacts
Impact of Electronic Ballasts and T-8 Fluorescent Lamps on Lighting Consumption

Fluorescent Lighting in Commercial Buildings (2001)

After 20 years, 50% of US lighting still uses inefficient magnetic ballasts

US Bureau of the Census
Market transformation vehicle

Table: EBMUD WaterSmart Irrigation Controller Program Qualifying Products

Table Details:
- **EBMUD WaterSmart Irrigation Controller Program Qualifying Products**
- **Note:** For better assistance, identify yourself as an EBMUD customer when you contact suppliers.

Table Columns:
- **Brand:** Aqua Conserve, ET Water Systems, Hunter, HydroPoint Weather/TRAK, Irritrol, Rain Master, Toro, Weathermatic
- **Controller Type:** Smart Oval, Smart Oval II, ET Irrigation, ET Irrigation Control
- **Product:** Sensi-TRAK, Sensi-TRAK II, Smart Oval, Smart Oval II, Smart Oval III, Smart Oval IV

Table Data:
- **Controller:** Sensi-TRAK, Sensi-TRAK II
- **Price Range:** $300 - $800
- **Quantity:** 3 to 10

Table Excerpt:

<table>
<thead>
<tr>
<th>Brand</th>
<th>Controller</th>
<th>Price Range</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aqua Conserve</td>
<td>ET Irrigation</td>
<td>$300 - $800</td>
<td>3 to 10</td>
</tr>
<tr>
<td>ET Water Systems</td>
<td>ET Irrigation Control</td>
<td>$300 - $800</td>
<td>3 to 10</td>
</tr>
<tr>
<td>Hunter</td>
<td>ET Irrigation</td>
<td>$300 - $800</td>
<td>3 to 10</td>
</tr>
<tr>
<td>HydroPoint Weather/TRAK</td>
<td>ET Irrigation</td>
<td>$300 - $800</td>
<td>3 to 10</td>
</tr>
<tr>
<td>Irritrol</td>
<td>Smart Oval III</td>
<td>$300 - $800</td>
<td>3 to 10</td>
</tr>
<tr>
<td>Toro</td>
<td>Smart Oval II</td>
<td>$300 - $800</td>
<td>3 to 10</td>
</tr>
</tbody>
</table>

Table Notes:
- **Note:** For better assistance, identify yourself as an EBMUD customer when you contact suppliers.

Table Explanations:
- **控制器**: Smart Oval II
- **价格范围**: $300 - $800
- **数量**: 3到10

Table Description:
- The table provides a list of qualifying products for the EBMUD WaterSmart Irrigation Controller Program.
- Each product is categorized by brand, controller type, and price range.
- The quantity column specifies the range of quantities available for each product.

Table Example:
- **Aqua Conserve**
 - Controller: ET Irrigation
 - Price Range: $300 - $800
 - Quantity: 3 to 10

Table Considerations:
- **Note:** For better assistance, identify yourself as an EBMUD customer when you contact suppliers.

Table Imagery:
- The table is presented in a tabular format with clear headings and data entries.

Disclaimer:

EBMUD reserves the right to discontinue any product or service at any time without prior notice. Any errors or omissions contained herein are the responsibility of the publisher, and EBMUD assumes no liability for errors or omissions. No warranty is made as to the accuracy or completeness of any data contained herein. Use of data is conditioned on acceptance by the user of all terms and conditions as set forth in the EBMUD user agreement.