Weighing the Costs and Benefits of State Renewables Portfolio Standards: A Comparative Analysis of State-Level Policy Impact Projections

Ryan Wiser, Cliff Chen, Mark Bolinger
Lawrence Berkeley National Laboratory

March 2007
Presentation Overview

1. Project Motivation and Scope
2. Projected Renewable Resource Impacts
3. Projected Impact on Electricity Costs
4. Scenario Analysis Results
5. Projected Public Benefits
6. Cost Study Methodologies and Assumptions
7. Conclusions and Areas for Improvement
State RPS Policies and Purchase Mandates: 21 States and D.C.

- WI: 10% by 2015
- NV: 20% by 2015
- TX: 5880 MW by 2015
- PA: 8% by 2020
- NJ: 22.5% by 2021
- CT: 10% by 2010
- MA: 4% by 2009
- RI: 16% by 2019
- NY: 24% by 2013
- MN: 25-30% by 2020-25
- ME: 30% by 2000
- MD: 7.5% by 2019
- DC: 11% by 2022
- DE: 10% by 2019
- HI: 20% by 2020
- WA: 15% by 2020
- MT: 15% by 2015
- CO: 10% by 2015
- AZ: 15% by 2025
- NM: 20% by 2020
Project Objectives

• **Background:** State RPS policies have become major drivers of renewable energy additions, but the adoption of new state RPS policies hinges on expected costs and benefits.

• **Objective:** We review previous state RPS cost-benefit *projections* to compare forecasted impacts across studies, and provide methodological guidance for future state RPS cost-benefit projections.
Project Overview

• **Project scope**
 – Survey of 28 state RPS cost impact projections in 18 states
 – Sample includes state and utility-level (not federal) analyses in the U.S.
 – Studies present projected (not actual) costs and benefits

• **Comparison of key results**
 – Direct or inferred projected retail rate impacts
 – Projected renewable deployment by technology
 – Scenario analysis; secondary cost impacts; and benefits
 – All results presented here are taken from the first year that each RPS hits its ultimate target level (e.g. 2013 for New York, 2010 for California)

• **Comparison of study methodologies**
 – Modeling approaches; cost characterizations; and key assumptions
State RPS Cost-Impact Study Sample: Who, When, and Where?
Author and Funding Entity Type

Author Type
- Consultant (16)
- Non-governmental organization (10)
- Academic (1)
- State agency (1)

Funding Entity Type
- Foundation/NGO (16)
- State commission/agency (7)
- National agency/department (2)
- Trade organization (1)
- ISO (1)
- Utility group (1)
Wind Expected to Fare Well, but Not to Dominate in All Regions

Wind represents 62% of incremental generation:
- 94% in Midwest
- 65% in East
- 51% in West
21 of 30* State RPS Analyses Predict Rate Increases of Less Than or Equal to 1%

Median retail rate increase = +0.7%
Median change in retail rates = +0.04¢
6 analyses predict rate savings

* Number of analyses is more than 28 because results for each state in CA/OR/WA (Tellus) are shown separately
Estimated Cost of State RPS Policies is Typically Modest, But Varies Considerably by Study
Scenario Analysis Is Often Used to Bound the Possible Impacts

- Production Tax Credit Availability: 11
- Renewable Technology Cost: 10
- Fossil Fuel Price Uncertainty: 9
- Wholesale Market Price Uncertainty: 7
- Alternate RPS Target Levels: 6
- Financing/Contract Assumptions: 5
- Availability of Renewable Imports: 4
- Carbon Credit Value: 4
- Renewable Resource Eligibility: 3
- Demand for RE from Other Sources: 2
- Maximum Compliance Penalty Cost: 2
- Expected Load Growth: 1
- Exposure to Price Risk: 1

Number of Studies Considering Each Scenario
Projected Residential Electricity Bill Impacts are Lowest in Midwest and West

Error Bars Show Range of Results Under Scenario Analysis

Avg. Bill Impact in 1st Peak Target Yr. (2003$/mo

Study - Incremental RPS Target %

Environmental Energy Technologies Division • Energy Analysis Department
Many State RPS Studies Evaluate Potential Public Benefits

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Number of Studies Considering Each Scenario</th>
</tr>
</thead>
<tbody>
<tr>
<td>Employment</td>
<td>9</td>
</tr>
<tr>
<td>Gross State Product</td>
<td>8</td>
</tr>
<tr>
<td>Income</td>
<td>8</td>
</tr>
<tr>
<td>Wholesale Electric Price Reduction</td>
<td>7</td>
</tr>
<tr>
<td>Natural Gas Price Reduction</td>
<td>5</td>
</tr>
<tr>
<td>CO2 Emissions Reduction</td>
<td>14</td>
</tr>
<tr>
<td>Criteria Pollutant Emissions Reduction</td>
<td>7</td>
</tr>
<tr>
<td>Water Use Reduction</td>
<td>2</td>
</tr>
</tbody>
</table>
Studies Predict Varying Levels of Employment Gains, Using Widely Ranging Methods/Assumptions

See full report for details and caveats associated with figure
State RPS May Put Downward Pressure on Market Prices, But Impacts Not Well Understood

Note: CO (UCS), RI (Tellus), and TX (UCS) also model wholesale price reductions but do not provide detailed data.
State RPS May Put Downward Pressure on Natural Gas Prices

Note: NY (CCAP) and NY (ICF) also model NG price reductions but do not provide detailed data.
Renewable Energy As a Hedge Against Natural Gas Price Risk: Sensitivity Analysis Results

As natural gas price expectations rise, the predicted cost (benefit) of the RPS declines (increases).
State RPS Policies Are Estimated to Displace CO2 Emissions Primarily from Natural Gas Plants

Displaced Emissions Rate in 1st Peak Target Yr. (MTCO2/MWh)

Displaced Emissions Rate

US Electric Sector Average Emissions Rate

Conventional Coal Plant Emissions Rate

NGCC Plant Emissions Rate

Displaced Emissions Rate in 1st Peak Target Yr.

CO2 Reductions in 1st Peak Target Yr. (Million metric tons)
Implied CO2 Abatement Costs Vary Widely

Median Abatement Cost = $3/MTCO2
Standard Deviation = $125/MTCO2

63% of the studies imply abatement costs of less than $10/metric ton
Four General Modeling Approaches Have Been Used

Four broad categories:

- **Category A**: Linear spreadsheet model of both RE + avoided utility cost
- **Category B**: Linear spreadsheet model of RE + generation dispatch model of avoided utility cost with base-case resource mix
- **Category C**: Linear spreadsheet model of RE + generation dispatch model of avoided utility cost with implied RPS mix
- **Category D**: Integrated energy model
Assumptions Matter More than the Selection of the Model

UNDER-ESTIMATION OF COSTS

- Wind capital cost assumptions appear low in many cases
- Transmission/integration costs not always considered fully
- Lack of consideration of RE demand from other sources
- Increased likelihood that RE displaces coal, not gas, not considered fully
- Expectations in some cases of long-term PTC availability

OVER-ESTIMATION OF COSTS

- Reliance on natural gas price forecasts that appear too low
- Secondary electric and gas price impacts ignored in many cases
- Potential for future carbon regulations often not considered
- Expectations in many cases that PTC will be extended for a very limited period, or not at all
Wind Capital Cost Assumptions Range from $750/kW to $3,000/kW in 2010-2015

Current costs range from $1400/kW to $2000/kW
Most Studies’ Natural Gas Price Projections Are Probably Too Low
Inconsistent PTC Assumptions Reflect Substantial Political Uncertainty

These Studies Assume No PTC Availability:
AZ (PEG), AZ (PIRG), CALADWP (EC), CA (CRS), CA/OR/WA (Tellus), HI (GDS), RI (Tellus), VA (CEC)
Many Studies Appropriately Consider the Secondary Costs of Renewable Generation

<table>
<thead>
<tr>
<th>Cost Variable</th>
<th>Number of studies</th>
<th>Studies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capacity value</td>
<td>20</td>
<td>AZ (PEG), CA (CRS), CA/OR/WA (Tellus), CO (PPC), CO (UCS), IA (WUC), IN (EEA), MD (Synapse), MA (SEA), MN (WUC), NE (UCS), NY (CCAP), NY (DPS), NY (ICF), NY (Potomac), PA (B&V), RI (Tellus), TX (UCS), WA (UCS), WI (UCS)</td>
</tr>
<tr>
<td>Transmission cost</td>
<td>15</td>
<td>CA (CRS), CA (UCS), CA/OR/WA (Tellus), CA LADWP (EC), CO (PPC), CO (UCS), IA (WUC), MA (SEA), MN (WUC), NE (UCS), PA (B&V), TX (UCS), VT (Synapse), WA (UCS), WI (UCS)</td>
</tr>
<tr>
<td>Integration cost</td>
<td>12</td>
<td>CA (CRS), CA/OR/WA (Tellus), CO (PPC), CO (UCS), IA (WUC), IN (EEA), MN (WUC), NJ (Rutgers), TX (UCS), WA (Lazarus), WA (UCS), WI (UCS)</td>
</tr>
<tr>
<td>Admin. & transaction cost</td>
<td>5</td>
<td>CA (UCS), MA (SEA), WA (Lazarus), WA (UCS), WI (UCS)</td>
</tr>
</tbody>
</table>

But as renewable penetrations reach higher levels, some of these costs need to be more carefully considered.
Conclusions

• Projecting state RPS costs is inherently uncertain
• Despite uncertainties, majority of studies project modest cost impacts
• Wind power expected to serve majority of the state-RPS-driven RE demand
• Recent trend toward studies that forecast not just direct costs and environmental benefits, but also macroeconomic and hedge benefits
• Studies use a variety of methods and data sources to calculate costs and benefits: a standard study “template” has not yet emerged
• Assumptions for primary and secondary costs and benefits likely to be more important than what model is used
Some Possible Areas of Improvement…

- **Improved Treatment of Transmission/Integration Costs:** need better estimates of these costs with high RE penetrations
- **Cost and Potential for Renewable Energy:** more rigorous and current estimates of cost and potential of RE technologies needed
- **Competing RPS Requirements:** consider how potential RPS policies in nearby states would affect RE resource supply and cost
- **Natural Gas Price Forecasts:** benchmark to NYMEX in early years; consider wide range of uncertainty
- **Coal as the Marginal Price Setter:** at high natural gas prices, need to consider possibility that RE will increasingly offset coal
- **Greater Use of Scenario/Risk Analysis:** natural gas and wholesale price uncertainty, PTC availability, wind capital costs
- **Representation of RPS Market Structure:** need to better represent actual contracting practices of obligated entities
- **More Robust Treatment of Public Benefits:** greater efforts to quantify the magnitude of hedge and macroeconomic effects
- **Consideration of Future Carbon Regulation:** consider impacts in the event that future carbon regulations are established