Open Automated Demand Response Communications in Demand Response for Wholesale Ancillary Services

Sila Kiliccote, Mary Ann Piette, Girish Ghatikar
Lawrence Berkeley National Laboratory
Ed Koch, Dan Hennage
Akuacom
John Hernandez, Albert Chiu, Osman Sezgen
Pacific Gas and Electric Company
John Goodin
California Independent System Operator
November 18, 2009

Sponsored by California Energy Commission
Presentation Overview

– Objectives
– System Architecture
– Methodology
– Results
– Conclusion and Next Steps
Participating Load Pilot Project

• Research Objectives:
 – Can OpenADR be used for ancillary services?
 – Are current DR strategies in C&I fast enough for fast DR?
 – Can the communication infrastructure over the Internet accommodate fast DR requirements: PL Resources have to meet non-spinning reserve requirements:
 • the resources have to deliver energy within 10-minutes,
 • be available for 2 hours, and
 • provide real-time telemetry to the CAISO

• PLP Team:
 – PG&E
 – Itron
 – Akuacom
 – CAISO
 – Metrum Technologies
 – Bow Networks
 – LBNL
Participating Load Pilot (PLP) Architecture

Acronyms:

EMS – Energy Management System
ADS – Automatic Dispatch System
SIBR – Scheduling Infrastructure Business Rules
DRAS – DR Automation Server
CLIR – Client Logic with Integrated Relay
RM – Revenue Meter
T – Telemetry

Methodology

- **Site Selection**: Developing criteria that considers load variability, weather sensitivity and load statistical summaries

- **DR Strategies**: Each facility used their existing DR strategies. One facility tested the use of feedback.

- **Ramp Rate Calculations**: (MW/min)

- **Data collection**: 15 min, 5 min and 4 sec. data

- **Demand Shed Calculations**: Forecasted loads are considered baseline.

- **Settlement Calculations**: (Actual Meter – DayAhead Schedule) X Real-Time Price

- **Dispatch Signal Propagation**: Dispatch received in XML
DR Strategies

<table>
<thead>
<tr>
<th>Site</th>
<th>DR Strategy</th>
<th>DR Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>IKEA EPA</td>
<td>Turning off 11 RTUs out of 43 and raising zone setpoints to 76 DegF</td>
<td>Noon to 6 pm</td>
</tr>
<tr>
<td>Contra Costa</td>
<td>4 DegF Global Temperature Adjustment with 1 DegF increments</td>
<td>2 pm to 6 pm</td>
</tr>
<tr>
<td>County</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Svenhards</td>
<td>Turn off Pan Washer</td>
<td>3 pm to 5 pm</td>
</tr>
</tbody>
</table>
OpenADR Signals – Critical Peak Pricing (CPP)
OpenADR signals - PLP

<table>
<thead>
<tr>
<th>PLP Event</th>
<th>Start Time</th>
<th>End Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ramp Period</td>
<td>ACTIVE</td>
<td>IDLE</td>
</tr>
<tr>
<td>Price</td>
<td>Nor.</td>
<td>Mod.</td>
</tr>
<tr>
<td>Load Level</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Test Dates and Sample Results

<table>
<thead>
<tr>
<th>Site/Date</th>
<th>17-Jul</th>
<th>6-Aug</th>
<th>27-Aug</th>
<th>31-Aug</th>
<th>11-Sep</th>
<th>18-Sep</th>
<th>21-Sep</th>
<th>22-Sep</th>
</tr>
</thead>
<tbody>
<tr>
<td>IKEA EPA</td>
<td>15:00 - 17:00</td>
<td></td>
<td></td>
<td>14:40 - 14:43</td>
<td>16:00 - 16:25, 16:35 - 16:50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CCC</td>
<td>15:00 - 17:00</td>
<td>17:00 - 18:00</td>
<td>14:00 - 15:00</td>
<td>14:40 - 14:43</td>
<td>16:00 - 16:25, 16:35 - 16:50</td>
<td>14:00 - 16:30, 16:40 - 17:55</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Svenhards</td>
<td>15:00 - 17:00</td>
<td>15:00 - 16:00</td>
<td>15:25 - 15:30</td>
<td></td>
<td></td>
<td>16:00 - 16:25, 16:35 - 16:50</td>
<td>16:30 - 16:40</td>
<td>16:55 - 17:00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Site</th>
<th>Date</th>
<th>vs. Actual Ramp Rate (MW/min)</th>
<th>Forecasted vs. Actual Average Load Reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>HE 15:00</td>
</tr>
<tr>
<td>Office</td>
<td>21-Sep</td>
<td>0.002/0.006</td>
<td>20/72</td>
</tr>
<tr>
<td>Bakery</td>
<td>18-Sep</td>
<td>0.012/0.012</td>
<td>-</td>
</tr>
<tr>
<td>Retail</td>
<td>18-Sep</td>
<td>0.001/0.01</td>
<td>-</td>
</tr>
</tbody>
</table>
Contra Costa County – Office Building

PLP EVENT

- Actual 5 min. Data
- Hourly Forecast with reduction
- Forecasted Data

Time of Day

Demand (kW)
Conclusion

• HVAC as an end use and global temperature adjustment as a DR strategy meet the requirements for wholesale ancillary services.

• OpenADR specification is used to communicate wholesale DR events in an open and interoperable way.
 – Customer’s transition from Auto-DR programs to PLP is seamless

• Internet can be used for fast DR to dispatch non-spinning ancillary services.
Next Steps

• Need to resolve glitches....
 – Dispatch rules were assumed to be sorted at the CAISO system and little intelligence was programmed into the DRAS in terms of program rules. DRAS can be used as a second check point for dispatch rules.
 – Maximum duration of dispatch and number of events for the PLP sites is not sufficient to test sustainability of sheds.

• Forecasting loads is a complex process and highly variable loads are extremely difficult to forecast. There is a need to develop better forecasting methods where load characteristics and changing in loads are better incorporated in the forecasting algorithms.

• Cost of telemetry for each site needs to be analyzed and scalability issues need to be explored.

• Settlements were not completed by the time this paper was written. Various value streams should be investigated.
Thank you!

Sila Kiliccote
skiliccote@lbl.gov

http://drrc.lbl.gov
Automation Goals and Definition

-Recent Research Goals
 • **Cost** - Develop low-cost, automation infrastructure to improve DR capability in California
 • **Technology** - Evaluate “readiness” of commercial buildings to receive signals
 • **Capability** - Evaluate capability of control strategies for current and future buildings

-Auto-DR Definition - Fully automated signals for end-use control
 • **Signaling** — Continuous, secure, reliable, 2-way comms; listen and acknowledge
 • **Industry Standards** - Open, interoperable communications to integrate with both common EMCS and other end-use devices that can receive a relay or similar signals (such XML)
 • **Timing of Notification** - Day ahead and day of signals facilitate diverse strategies
Auto-DR Multi-Year Technology Development Summary

- Develop Demand Response Automation Server (annually updated)
- Develop connection to Energy Management Control Systems (EMCS)
- Field Tests – Recruit sites/ 2 to 12 events per summer
 - 2003 - 5 sites – Internet link to Energy Information Systems (EIS)
 - 2004 - 18 sites - linked to EIS and EMCS
 - 2005 - PG&E CPP collaboration
 - 2006 - PG&E, SDG&E, Planning with SCE
 - 2007 - PG&E and SCE
 - 2008 - PG&E and SCE
 - 2009 - Bonneville Power Administration/ Seattle City Light, Participating Load Pilot w/ PG&E
- Evaluate with weather normalized baseline
- Interview site after each event

<table>
<thead>
<tr>
<th>Year</th>
<th># of Sites</th>
<th>DRAS</th>
<th>Site Communications</th>
<th>Utility</th>
</tr>
</thead>
<tbody>
<tr>
<td>2003</td>
<td>5</td>
<td>Infotility</td>
<td>XML Gateway Software</td>
<td>None</td>
</tr>
<tr>
<td>2004</td>
<td>18</td>
<td>Infotility</td>
<td>XML - Internet Relay</td>
<td>None</td>
</tr>
<tr>
<td>2005</td>
<td>11</td>
<td>Akuacom</td>
<td>XML - Internet Relay</td>
<td>PG&E</td>
</tr>
<tr>
<td>2006</td>
<td>25</td>
<td>Akuacom</td>
<td>XML - CLIR</td>
<td>PG&E, SDG&E</td>
</tr>
<tr>
<td>2007-08</td>
<td>200+</td>
<td>Akuacom</td>
<td>XML - CLIR</td>
<td>Statewide</td>
</tr>
</tbody>
</table>
Schedule Submission Process

Two days before trading day

Load bid and Pseudo Generating bid forecasted by 3 pm and placed in a secure folder

PG&E provides ITRON with historical and forecasted weather and historical load data

ITRON Metrix IDR™ generates 5-min, 7 day rolling load and pseudo generating bids

Any changes in operations is communicated to PG&E by the facility operators

One day before trading day

Hourly Bids to PG&E procurement by 5 am.

CAISO Day Ahead Market closes at 10 am and DR awards are published by 1pm

Last minute exceptions to customer loads communicated to PG&E by 9 am

Trading day

Awards may be dispatched by the CAISO
IKEA Hourly Loads and Actual 5 Minute Load Data

Time of Day

Demand (kW)

Forecasted-Actual Hourly Bid

-200 -100 0 100 200 300 400

Time of Day