Distribution FIDVR Monitoring

DOE-NERC FIDVR Workshop

Richard Bravo
FIDVR Events

- PMUs has been recording FIDVR events for many years
- Limited information on how FIDVR events evolve in distribution system
- Distribution FIDVR events details needed to assess:
 - Spreading behavior
 - Voltage levels at T&D
 - Time of events
 - Real and reactive power demands
PQ Monitors on Residential Xmers

- Installed in pad-mount residential xmers secondary side: 240V
- Record residential loads aggregated behavior
- Record: V & I
 - Line to ground voltage
 - Line current (aggregated)
PQ Monitors Installations

- Installed in Valley system dist. circuits (1,500 MW peak load)
- PQ threshold settings:
 - UV triggers at 80%
 - OV triggers at 110%
 - Capture event
 - RMS
 - sinusoidal waveforms
Event #1 (RMS)

- Multiple lightning strikes caused multiple distribution faults recorded by the PQ devices, but not by transmission PMU
 - P & Q increased during FIDVR
 - P=2.6 p.u. at V=90%
 - Q=7 p.u. at V=90%
 - FIDVR lasted 9 sec
 - TOPs open disconnecting loads after seven (7) second mark
- FIDVR recorded only in distribution system
Event #1 (sinusoidal)

- Fault initiated at ~70 degrees of voltage waveform
- Fault must have been in adjacent circuit
- Fault cleared fast but not fast enough to prevent A/C stalling
- Stalling prevented voltage from recovering
 - Current waveform (red) increases significantly: 200A → 700A
 - Voltage hold at 80%
 - Current lagging behavior increases significantly during the event
Event #6

- Lightning causes FIDVR event recorded by BOTH distribution PQ devices and transmission PMU
DER Proposed VRT

- DER penetration is increasing significantly and may become a major generating part of the grid during certain times
- Standards are being revised to allow voltage ride through

<table>
<thead>
<tr>
<th>VOLTAGE (p.u.)</th>
<th>RIDE-THROUGH (seconds)</th>
<th>OPERATION</th>
<th>MUST DISCONNECT (seconds)</th>
</tr>
</thead>
<tbody>
<tr>
<td>>1.2</td>
<td>none</td>
<td>Disconnect</td>
<td>0.16</td>
</tr>
<tr>
<td>1.1 ~ 1.2</td>
<td>12</td>
<td>Momentary Cessation</td>
<td>13</td>
</tr>
<tr>
<td>0.88 ~ 1.10</td>
<td></td>
<td>Continuous Operation</td>
<td></td>
</tr>
<tr>
<td>0.70 ~ 0.88</td>
<td>20</td>
<td>Mandatory Operation</td>
<td>21</td>
</tr>
<tr>
<td>0.5 ~ 0.7</td>
<td>10</td>
<td>Mandatory Operation</td>
<td>11</td>
</tr>
<tr>
<td>0 ~ 0.5</td>
<td>1 sec</td>
<td>Momentary Cessation</td>
<td>1.5</td>
</tr>
</tbody>
</table>
Ride Through Grid Voltage Events

2012 FIDVR #5 (Local Distribution Event)
DER Can Provide Grid Support
Conclusion

• No linear relationship between T&D voltages during FIDVR
• Faults at any point in the waveform can provoke FIDVR if there is large induction motor load
• Stalling happens very quick within 2 cycles
• DER should ride through voltage events
• DER should supply VARs to support the voltage during voltage events
• Voltage support typically less than 30 seconds so minimum impact to generation revenue